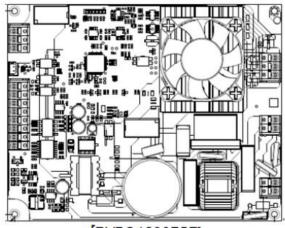


RVBS Quick Start Manual

Content

- ∇ General installation considerations
- ∇ Frequently used parameters
- ∇ Motor parameters
- ∇ Configuration with digital input
- ∇ Configuration with analog input
- ∇ Alarms
- ∇ Keypad user guide

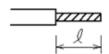


General installation considerations

Installation - Mounting

Secure the inverter to the mounting base with 4 screws or bolts (M3) so that the RVBS Heatsink is on the top side. Tighten those screws or bolts perpendicular to the mounting base. (Maximum torque is 0.6N·m)

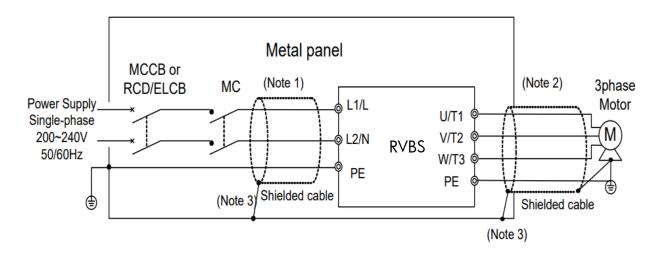
Do not mount the inverter upside down or horizontally. Doing so will reduce the heat dissipation efficiency of the inverter and cause the overheat protection function to operate, so the inverter will not run.



[RVBS120075F]

Installation - Wire size

			Recommer	nded wire size (mm²)	
Power supply	Nominal applied motor (kW)	Inverter type	Main circuit: input: [L1/L, L2/N] output: [U/T1,V/T2,W/T3] Earth: [PE] Braking	Control circuit Alarm: [ALM_A, ALM_B, ALM_C]	Digital input Analog input
Single-phase 200V	98 0.55 RVBS120		1.5(1.5)) mm2	0.5mm
Single 20	0.75	RVBS120075F			


^{*}Bare wire length: 8~9mm

Installation - EMC

Power supply voltage	Applicable motor rating (kW)	Inverter type	Rated Current(A) of MCCB (w/o ACR)
Single- phase 200V	0.55	RVBS120055F	10
	0.75	RVBS120075F	15

Note 1: Pass the EMC filter input wires (shielded cable and grounding wire in a bundle) through the ferrite bead core for reducing radio noise two times.

Note 2: Pass the EMC filter output wires (shielded cable and grounding wire in a bundle) through the ferrite bead core for reducing radio noise two times.

Note 3: Connect the shielding layer of the shielded cable to the motor and panel electrically and ground the motor and panel.

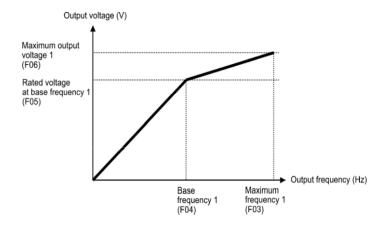
Frequently used parameters

Function Code	Name	Description
F00	Data Protection	O: Disable both data protection and digital reference protection 1: Enable data protection and disable digital reference protection 2: Disable data protection and enable digital reference protection 3: Enable both data protection and digital reference protection
F01	Frequency Command 1	0: UP/DOWN keys on keypad Keypad enters frequency reference data in to F29 1: Analog input
F02	Operation Method	1: Terminal command FWD or REV 2: RUN/STOP keys on keypad (forward) 3: RUN/STOP keys on keypad (reverse)
F21	Motor Sound (Carrier frequency)	2 to 10
F24	Control Mode Selection	O: V/f control with slip compensation inactive 1: Dynamic torque vector control 2: V/f control with slip compensation active

Frequently used parameters - Frequency setting

Function Code	Name	Description
F03	Maximum Frequency 1	25.0 to 120.0
F13	Frequency Limiter (High)	0.0 to 120.0
F14	Frequency Limiter (Low)	0.0 to 120.0
F18	Starting Frequency 1	0.1 to 60.0
F20	Stop Frequency	0.1 to 60.0
F29	Digital Reference Frequency	0.0 to 120.0

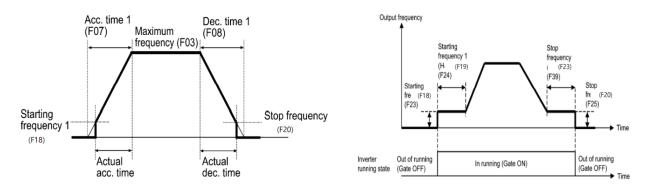
F13 and F14 specify the upper and lower limits of the output frequency, respectively.


∇ When you change the frequency limiter (High) (F13) in order to raise the reference frequency, be sure to change the maximum frequency (F03) accordingly.

∇ Maintain the following relationship among the data for frequency control: F13 > F14, F13 > F18, F13 > F20, and F03 > F14. Where, F18 is of the starting frequency and F20 is of the stop frequency. If you specify any wrong data for these function codes, the inverter
 ∇ may not run the motor at the desired speed or cannot start it normally.

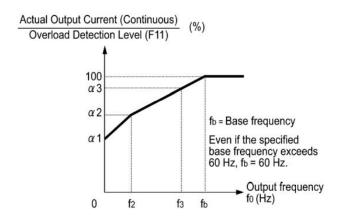
Frequently used parameters - Output voltage setting

Function Code	Name	Description
F03	Maximum Frequency 1	25.0 to 120.0
F04	Base Frequency 1: nameplate of the motor	25.0 to 120.0
F05	Rated Voltage at Base Frequency 1: nameplate of the motor	0: Output a voltage in proportion to input voltage 80 to 240: Output an AVR-controlled voltage
F06	Maximum Output Voltage 1	80 to 240: Output an AVR-controlled voltage



Frequently used parameters – Starting, Stop, slope setting

Function Code	Name	Description	Example	
F03	Maximum Frequency 1	25.0 to 120.0	100.0	
F07	Acceleration Time 1	0.01 to 655	5.00	Acc.slope = 100Hz/5.00sec = 20Hz/s Dec.slope = 100Hz/10.00sec = 10Hz/s
F08	Deceleration Time 1	0.01 to 655	10.00	
F18	Starting Frequency 1	0.1 to 60.0	0.5	



F19	Starting	0.00 to 10.00	1.00	Inverter outputs from 0.5Hz. After
	Frequency1			outputting 0.5Hz for 1 second,
	(Holding time)			acceleration starts.
F20	Stop Frequency	0.1 to 60.0	0.5	
				If it reaches 0.5Hz during deceleration, it
F23	Stop Frequency (Holding time)	0.00 to 10.00	2.00	outputs 0.5Hz for 2 seconds before stopping the inverter output.

Frequently used parameters – Motor thermal protection

Function Code	Name	Description
F09	Motor ETH Characteristic	1: For a general-purpose motor with shaft-driven cooling fan 2: For an inverter-driven motor with separately powered cooling fan
F10	Motor ETH Level	0.00: Disable, 0.01 to 100.0 1 to 135% of the rated current (allowable continuous drive current) of the motor
F11	Motor ETH Thermal Time Constant	0.5 to 75.0

The figure shows operating characteristics of the electronic thermal overload protection when F09 = 1. The characteristic factors a1 through a3 as well as their corresponding switching frequencies f2 and f3 vary with the characteristics of the motor. Also, Actual Output Current (Continuous) means the detection level of output current that electronic thermal overload protection activates above.

	Nominal applie Thermal time constant d motor (kW) (Factory default)		Reference current for setting the thermal ti	Output frequency for motor ch aracteristic factor		Characteristic facto r		
L	d motor (kw)	(ractory default)	me constant (Imax)	f2	f3	1	2	3
	0.1 to 0.75	5 min	Allowable continuous current 150%	5 Hz	7 Hz	75%	85%	100%

Frequently used parameters – Restart (flying start) Frequently used parameters – Current limit

Function Code	Name	Description
F25	Current Limiter (Mode selection)	O: Disable (No current limiter works.) 1: Enable at constant speed (Disable during ACC/DEC) 2: Enable during ACC/constant speed operation
F26	Current Limiter (Level)	20 to 200 (The data is interpreted as the rated output current of the inverter for 100%.) *2)

Data for F25	Running states that enable the current limiter			
	During acceleration	During constant speed	During deceleration	
0	disable	disable	disable	
1	disable	enable	disable	
2	enable	enable	disable	

F26 specifies the operation level at which the output current limiter becomes activated, in ratio to the inverter rating.

Note: Since the current limit operation with F25 and F26 is performed by software, it may cause a delay in control. If you need a quick response, specify a current limit operation by hardware (H07 = 1) at the same time.

Note: If an excessive load is applied when the current limiter operation level is set extremely low, the inverter will rapidly lower its output frequency. This may cause an overvoltage trip or dangerous turnover of the motor rotation due to undershooting

Motor parameters

Function Code	Name	Description
PO1	Motor (Rated capacity): nameplate of the motor	0.01 to 30.00
P02	Motor (Rated current): nameplate of the motor	0.00 to 100.0
P03	Motor (Auto-tuning)	0: Disable 1: Tune when the motor stops (%R1, %X)

PO4~P10: please refer to "2.2.8 Motor parameters" in manual

- •Motor parameter(P05(%R1), P06(%X)) is needed when control mode(F24) is "1: Dynamic torque vector control" or "2: slip compensation control" and when auto torque boost is activated(F32=2)
- Please perform auto-tuning when motor parameter is needed for application and the following conditions are met
- The motor to be driven is a non-standard motor
- Cabling between the motor and the inverter is long
- A reactor is inserted between the motor and the inverter
- Auto-tuning sequence
- 1) power on the inverter with motor connected
- 2) set PO3 to "1"
- Keypad: after setting PO3, "Run" button should be pushed.
- Communication (RS485): when PO3 is set by 3 via RS485, then inverter will start auto-tuning without run command
- 3) inverter will perform auto-tuning by itself
- DC and altered current will be induced to motor. (Normally, it should be over in 35 seconds.)
- 4) after auto-tuning, PO3 will be reset to "O" automatically
- auto-tuning will be stop when a tuning failure, interruption, or abnormal tuning result is detected during tuning of motor parameters. (Alarm code: 37, Keypad indication: Er7)

Configuration via digital input

Digital Input – Function code

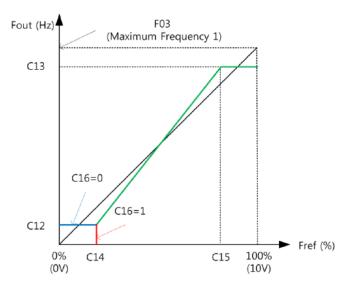
Function Code	Name	Description
E01	Terminal [DI1] Function 1	Selecting function 1 code data assigns the corresponding function to terminals [DI 1], [DI2] as listed in the manual.
E02	Terminal [DI2] Function 1	[FWD] and {REV] function can not support logic-inverted assignment (i.e., 1098, 109 9)

Digital Input - value setting

Function code data		Terminal commands assigned	Symbol
Active ON	Active OFF		
8	1008	Reset alarm	RST
40	1040	Emergency stop	EST
97	1097	Change motor operation direction	CHD
98	•	Run forward	FWD
99	•	Run reverse	REV
100	1	No choice	NOC

^{*}These functions codes may also switch the logic system between normal and negative to define how the inverter logic interprets either ON or OFF status of each terminal. The default setting is normal logic system "Active ON."

Configuration via analog input


Analog Input - Function code

Function Code	Name	Description
C10	Analog Input Voltage Offset	-10.0 to 10.0
C11	Analog Input Voltage Gain	0.0 to 200.0
C12	Frequency at Minimum Analog Input	0.0 to F03 (Maximum Frequency 1)
C13	Frequency at Maximum Analog Input	0.0 to F03 (Minimum Frequency 1)
C14	Minimum Analog Input Offset	0.0 to 100.0
C15	Maximum Analog Input Offset	0.0 to 100.0
C16	Analog Input Start Frequency	0: C12 1: OHz
C17	Analog Input Low-pass Filter Gain	1 to 8

- Analog Input Voltage Offset (C10)
 - C10 specifies real time editable offset factor for analog input voltage.
- Analog Input Voltage Gain (C11)
 - C11 specifies real time editable gain factor for analog input voltage.
- Analog Input Low-pass Filter Gain (C17)
 - C17 specifies the number of samplings of filter analog input to help reducing noise on signal

Function Code	Name	Exemple
F03	Maximum Frequency 1	90Hz
C12	Frequency at Minimum Analog Input	40Hz
C13	Frequency at Maximum Analog Input	80Hz
C14	Minimum Analog Input Offset	1V
C15 Maximum Analog Input Offset		9V
C16 Analog Input Start Frequency		1

1 1 /	
Analog input	Target frequency
Ain < 1V	0.0Hz
1V <= Ain <=9V	40.0 ~ 80.0 Hz
9V < Ain	80.0Hz

Key

Fout: Output frequency Fref: Reference frequency

Alarm code

Value	Keypad indication	Description	LED flashes
1	OC1	Instantaneous over-current (during acceleration	
2	OC2	Instantaneous over-current (during deceleration)	
3	OC3	Instantaneous over-current (during steady state)	
6	OU1	Over-voltage (during acceleration)	
7	OU2	Over-voltage (during deceleration)	3
8	OU3	Over-voltage (during steady state)	
10	LU	Under-voltage	
17	OH1	Heatsink overheated 7	
22	dbH	Braking resistor overheated 8	
23	OL1	Motor overload	
25	OLU	Inverter overload	
31	Er1	Memory error	Fully ON
33	Er3	CPU error	
37	Er7	Tuning error	2
38	Er8	RS-485 communications error 1	
46	OPL	Output phase loss 9	
51	ErF	Data saving error during under-voltage 1	
61	STO	STO activated	10
254	Err	Mock alarm	4

Keypad user guide

Keypad Component

The keypad allows you to run and stop the motor, display various data, configure function code data, and monitor I/O signal states, maintenance information and alarm information.

Keypad Function

Item	LED Monitor, Keys, and LED Indicators	Functions	
		Four-digit, 7-segment LED monitor which displays the followings according to the operation modes.	
LED Monitor	<i>6 0.0 0</i>	■ In Running mode:	Running status information (e.g., output frequency, current, and voltage)
		■ In Programming mode: ■ In Alarm mode:	When a light alarm occurs, ∠ ¬¬¬⟨¬∠⟩ is displayed. Menus, function codes and their data Alarm code, which identifies the alarm factor that has activated the protective function.
		Program/Reset key which switches the operation modes of the inverter.	
	PRG	■ In Running mode:	Pressing this key switches the inverter to Programming mode.
		■ In Programming mode:	Pressing this key switches the inverter to Running mode.
		■ In Alarm mode:	Pressing this key after removing the alarm factor resets the alarm and switches back to Running mode.
		Function/Data key which switches the operations you want to do in each mode as follows:	
Operation Keys	FUNC DATA	■ In Running mode:	Pressing this key switches the information to be displayed concerning the status of the inverter (output frequency (Hz), output current (A), output voltage (V), etc.).
			When a light alarm is displayed, holding down this key resets the light alarm and switches back to Running mode.
		■ In Programming mode:	Pressing this key displays the function code or establishes the data entered with \bigcirc and \bigcirc keys.
		■ In Alarm mode:	Pressing this key displays the details of the problem indicated by the alarm code that has come up on the LED monitor.
	RUN	RUN key. Press this key to run the motor.	
	STOP)	STOP key. Press this key to stop the motor.	
		UP and DOWN keys. Press these keys to select the setting items and change the function code data displayed on the LED monitor.	
>>		Shift key. Press this key to shift the cursor to the right for entry of a numerical value.	

Keypad Configuration Steps

To change parameter setting value using RV_Keypad, please refer to the following steps:

RV-Keypad when wiring it to the RVBS

Step 1

Press PRG/RESET to have access to the groups of registers and use the up and down button to select the group

Step 2

Press FUNC/DATA to access the register and use the UP/DOWN buttons to select the register to configure

Step 3

Press FUNC/DATA
Select the value using UP/DOWN buttons

Step 4

After changing the value, press FUNC/DATA key to save